Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

2-[(2-Hydroxyethyl)azaniumyl]ethanaminium oxalate monohydrate

Yu Jin

Ordered Matter Science Research Center, Southeast University, Nanjing 211189, People's Republic of China Correspondence e-mail: jinyunihao@yahoo.cn

conceptindence e-mail: jinyunmao@yanoo.en

Received 28 December 2011; accepted 29 December 2011

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.003 Å; R factor = 0.038; wR factor = 0.086; data-to-parameter ratio = 16.7.

In the title hydrated molecular salt, $C_4H_{14}N_2O^{2+}\cdot C_2O_4^{2-}\cdot H_2O$, the oxalate dianion is almost planar (r.m.s. deviation = 0.020 Å). In the crystal, the components are linked by N– $H \cdots O(water)$, N– $H \cdots O(oxalate)$ O– $H(ammonium) \cdots$ O(oxalate), O– $H(water) \cdots O(oxalate)$ and O– $H(water) \cdots$ O(ammonium) hydrogen bonds, thereby forming a complex three-dimensional packing motif.

Related literature

For related structures, see: Sakai *et al.* (2003); Kolitsch (2004); Cotton *et al.* (1996); Barnes (2003).

Experimental

Crystal data

 $\begin{array}{l} C_4 H_{14} N_2 O^{2+} \cdot C_2 O_4^{\ 2-} \cdot H_2 O \\ M_r = 212.21 \\ \text{Monoclinic, } P2_1 \\ a = 5.7311 \ (11) \text{ Å} \\ b = 13.136 \ (3) \text{ Å} \\ c = 6.7373 \ (13) \text{ Å} \\ \beta = 102.52 \ (3)^{\circ} \end{array}$

 $V = 495.16 (17) Å^{3}$ Z = 2Mo K\alpha radiation $\mu = 0.13 \text{ mm}^{-1}$ T = 293 K $0.3 \times 0.3 \times 0.2 \text{ mm}$

Data collection

Rigaku Mercury CCD

diffractometer Absorption correction: multi-scan (*CrystalClear*; Rigaku, 2005) $T_{\min} = 0.489, T_{\max} = 1.000$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.038$ $wR(F^2) = 0.086$ S = 0.972261 reflections 135 parameters 3 restraints 5068 measured reflections 2261 independent reflections 1853 reflections with $I > 2\sigma(I)$ $R_{int} = 0.046$

H atoms treated by a mixture of independent and constrained refinement
$$\begin{split} &\Delta\rho_{max}=0.22 \text{ e } \text{\AA}^{-3} \\ &\Delta\rho_{min}=-0.25 \text{ e } \text{\AA}^{-3} \end{split}$$

Table 1 Hydrogen-bond geometry (Å, $^{\circ}$).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1-H1A\cdotsO1W^{i}$	0.89	1.96	2.823 (2)	164
$N1 - H1B \cdots O3^{ii}$	0.89	2.12	2.8769 (19)	143
$N1 - H1B \cdots O4^{ii}$	0.89	2.11	2.818 (2)	136
$N1 - H1F \cdots O2$	0.89	1.82	2.707 (2)	172
$N2-H2A\cdots O4^{iii}$	0.90	1.80	2.688 (2)	170
$N2-H2D\cdots O5^{iv}$	0.90	2.16	2.862 (2)	134
$N2-H2D\cdots O2^{iv}$	0.90	2.00	2.773 (2)	143
$O1 - H1C \cdots O3^{v}$	0.82	1.94	2.736 (2)	163
$O1W - H2W \cdots O5^{iv}$	0.84(1)	1.91 (1)	2.753 (2)	178 (2)
$O1W - H1W \cdots O1^{vi}$	0.84 (1)	2.27 (3)	2.968 (2)	141 (4)

Symmetry codes: (i) $-x + 1, y - \frac{1}{2}, -z + 1$; (ii) x, y, z - 1; (iii) x + 1, y, z - 1; (iv) x + 1, y, z; (v) $-x + 2, y + \frac{1}{2}, -z + 1$; (vi) x - 1, y, z.

Data collection: *CrystalClear* (Rigaku, 2005); cell refinement: *CrystalClear*; data reduction: *CrystalClear*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXL97*.

The author thanks the Ordered Matter Science Research Center, Southeast University, for support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6584).

References

Barnes, J. C. (2003). Acta Cryst. E59, 0931-0933.

- Cotton, F. A., Daniels, L. M., Shang, M., Llusar, R. & Schwotzer, W. (1996). Acta Cryst. C52, 835–838.
- Kolitsch, U. (2004). Acta Cryst. C60, m129-m133.
- Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.
- Sakai, K., Akiyama, N., Mizota, M., Yokokawa, K. & Yokoyama, Y. (2003). Acta Cryst. E59, m408–m410.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supplementary materials

Acta Cryst. (2012). E68, o337 [doi:10.1107/S1600536811056157]

2-[(2-Hydroxyethyl)azaniumyl]ethanaminium oxalate monohydrate

Y. Jin

Comment

Several crystal structures of oxalate have been reported previously (Sakai *et al.*, 2003; Kolitsch, 2004; Cotton *et al.*, 1996). As an extension of research, we report here the synthesis and the crystal structure of the title complex, $(C_4H_{14}N_2O)^{2+}$. $(C_2O_4)^{2-}$. H_2O .

In the crystal synthesized by Barnes, amine salts with oxalic acid contain the monohydrogenoxalate ion (Barnes, 2003), while the crystal reported here, oxalic acid reacts with alcohol amine to give crystals of the fully deprotonated $C_2O_4^{2-}$ salt as the monohydrate.

The (locally) centrosymmetric anion and one cation are shown in Fig. 1 with the hydrogen bonds listed in Table 1. The water molecules in the compound serve as a connection, *i.e.*, two protonated cations are connected to a water molecule through N—H…O (water) and O—H (water)…O (ammonium) hydrogen-bonds and one anion is linked to the same water molecule *via* O—H (water)…O (oxalate) hydrogen bonding interactions, the components are further held by O—H (ammonium)…O (oxalate), O—H (water)…O (oxalate) and O—H (water)…O (ammonium) hydrogen-bonding interactions, and thus forms a three-dimensional structure. (Fig.2)

Experimental

A mixture of $C_4H_{12}N_2O$ (104.15 mg, 1.00 mmol), $C_2H_2O_4$ (90.04 mg, 1.00 mmol) and distilled water (5 ml) was stirred a few minutes at room temperature, giving a clear transparent solution. After evaporation for several days, colorless blocks of the title compound were obtained in about 82% yield and filtered and washed with distilled water.

Refinement

The absolute sturcture is indeterminate based on the present refinement. H atoms bound to carbon and nitrogen were placed at idealized positions [C—H = 0.97 Å, O—H = 0.82 to 0.84 Å and N—H = 0.89 to 0.90 Å] and allowed to ride on their parent atoms with U_{iso} fixed at 1.2 $U_{eq}(C,N)$.

Figures

Fig. 1. Molecular structure of the title compound with displacement ellipsoids drawn at the 30% probability level.

Fig. 2. Crystal structure of the title compound with view along the *a* axis. Intermolecular interactions are shown as dashed lines.

2-[(2-Hydroxyethyl)azaniumyl]ethanaminium oxalate monohydrate

Crystat aata	Cry	stal	data
--------------	-----	------	------

$C_4H_{14}N_2O^{2+}C_2O_4^{2-}H_2O$	F(000) = 228
$M_r = 212.21$	$D_{\rm x} = 1.423 {\rm ~Mg} {\rm ~m}^{-3}$
Monoclinic, P2 ₁	Mo K α radiation, $\lambda = 0.71073$ Å
Hall symbol: P 2yb	Cell parameters from 3450 reflections
a = 5.7311 (11) Å	$\theta = 6.2 - 55.3^{\circ}$
b = 13.136 (3) Å	$\mu = 0.13 \text{ mm}^{-1}$
c = 6.7373 (13) Å	T = 293 K
$\beta = 102.52 \ (3)^{\circ}$	Block, colorless
$V = 495.16 (17) \text{ Å}^3$	$0.3\times0.3\times0.2~mm$
Z = 2	

Data collection

Rigaku Mercury CCD diffractometer	2261 independent reflections
Radiation source: fine-focus sealed tube	1853 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.046$
ω scans	$\theta_{\text{max}} = 27.5^{\circ}, \ \theta_{\text{min}} = 3.1^{\circ}$
Absorption correction: multi-scan (<i>CrystalClear</i> ; Rigaku, 2005)	$h = -7 \rightarrow 7$
$T_{\min} = 0.489, T_{\max} = 1.000$	$k = -16 \rightarrow 16$
5068 measured reflections	$l = -8 \rightarrow 8$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.038$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.086$	H atoms treated by a mixture of independent and constrained refinement
<i>S</i> = 0.97	$w = 1/[\sigma^2(F_o^2) + (0.0314P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$

2261 reflections	$(\Delta/\sigma)_{max} < 0.001$
135 parameters	$\Delta\rho_{max} = 0.22 \text{ e} \text{ Å}^{-3}$
3 restraints	$\Delta \rho_{\rm min} = -0.25 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
C1	1.1138 (4)	0.63105 (16)	0.1821 (3)	0.0342 (5)
H1D	1.1520	0.5976	0.0648	0.041*
H1E	1.0764	0.7017	0.1467	0.041*
C2	0.9023 (4)	0.58091 (12)	0.2350 (3)	0.0290 (4)
H2B	0.8808	0.6071	0.3644	0.035*
H2C	0.7607	0.5980	0.1328	0.035*
C3	0.6935 (4)	0.41905 (13)	0.2318 (3)	0.0256 (4)
H3A	0.5915	0.4347	0.1007	0.031*
H3B	0.6171	0.4452	0.3365	0.031*
C4	0.7217 (4)	0.30554 (15)	0.2545 (3)	0.0284 (5)
H4A	0.8062	0.2791	0.1555	0.034*
H4B	0.8127	0.2888	0.3895	0.034*
C5	0.2891 (3)	0.33640 (13)	0.6829 (2)	0.0213 (4)
C6	0.1213 (3)	0.39951 (13)	0.7871 (3)	0.0234 (4)
H1W	0.472 (5)	0.541 (3)	0.636 (3)	0.117 (14)*
H2W	0.702 (3)	0.522 (2)	0.723 (3)	0.057 (9)*
N1	0.4808 (3)	0.26039 (11)	0.2219 (2)	0.0244 (4)
H1A	0.4931	0.1931	0.2351	0.037*
H1B	0.3992	0.2758	0.0975	0.037*
H1F	0.4048	0.2851	0.3134	0.037*
N2	0.9269 (3)	0.46896 (11)	0.2484 (2)	0.0210 (3)
H2A	0.9948	0.4465	0.1480	0.025*
H2D	1.0235	0.4521	0.3678	0.025*
01	1.3118 (3)	0.62633 (11)	0.3457 (2)	0.0453 (4)
H1C	1.4124	0.6679	0.3285	0.068*
O2	0.2737 (3)	0.35255 (12)	0.49926 (18)	0.0391 (4)
03	0.4216 (3)	0.27372 (10)	0.78762 (18)	0.0320 (3)
O4	0.1307 (3)	0.38042 (10)	0.96855 (18)	0.0333 (3)
05	-0.0084 (3)	0.46250 (12)	0.6815 (2)	0.0429 (4)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

supplementary materials

O1W	0.5752 (3)	0.54801 (12) 0.744	8 (2)	0.0425 (4)	
Atomic displa	acement parameters	$s(A^2)$				
	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0382 (13)	0.0278 (9)	0.0369 (10)	-0.0049 (9)	0.0084 (9)	0.0046 (8)
C2	0.0263 (11)	0.0223 (9)	0.0374 (10)	0.0008 (8)	0.0044 (8)	0.0020 (8)
C3	0.0216 (11)	0.0251 (9)	0.0314 (10)	-0.0002 (8)	0.0081 (8)	-0.0009 (7)
C4	0.0241 (11)	0.0250 (9)	0.0375 (11)	0.0007 (9)	0.0102 (9)	-0.0023 (8)
C5	0.0188 (10)	0.0222 (8)	0.0227 (8)	-0.0017 (7)	0.0045 (7)	0.0004 (7)
C6	0.0231 (11)	0.0248 (9)	0.0220 (8)	-0.0004 (8)	0.0039 (8)	-0.0028 (7)
N1	0.0279 (10)	0.0218 (7)	0.0242 (7)	-0.0011 (7)	0.0071 (7)	0.0015 (6)
N2	0.0213 (9)	0.0226 (7)	0.0192 (7)	0.0018 (7)	0.0047 (6)	0.0004 (6)
01	0.0344 (9)	0.0474 (9)	0.0505 (9)	-0.0138 (8)	0.0015 (7)	0.0129 (7)
02	0.0393 (10)	0.0576 (10)	0.0234 (7)	0.0198 (8)	0.0138 (6)	0.0067 (6)
O3	0.0358 (9)	0.0320 (7)	0.0290 (7)	0.0148 (7)	0.0086 (6)	0.0043 (5)
O4	0.0371 (9)	0.0424 (8)	0.0234 (6)	0.0127 (7)	0.0128 (6)	0.0031 (6)
05	0.0495 (11)	0.0490 (8)	0.0305 (7)	0.0281 (8)	0.0091 (7)	0.0080 (7)
O1W	0.0448 (11)	0.0345 (8)	0.0478 (10)	0.0076 (8)	0.0091 (8)	-0.0079 (7)
Geometric po	arameters (Å, °)					
C101		1 402 (2)	C5	03	1 1	(2)
C1 = C2		1.402(2) 1.489(3)	C5—	02	1.2	233(2)
C1H1D		0.9700	C5	02 C6	1.4	548 (3)
C1—H1E		0.9700	C6—	-05	1.	230(2)
$C^2 - N^2$		1478(2)	C6—	.04	1.2	238(2)
C2—H2B		0.9700	N1—	-H1A	0.5	8900
C2_H2C		0.9700	N1—	-H1R	0.5	8900
C3—N2		1472(2)	N1—	-H1F	0.0	8900
C3-C4		1.172(2) 1.504(3)	N2—	-H2A	0.0	9000
С3—НЗА		0.9700	N2—	-H2D	0.0	9000
C3—H3B		0.9700	01-	-H1C	0.5	8200
C4—N1		1 475 (3)	01W	—H1W	0.5	338(10)
C4—H4A		0.9700	01W	—H2W	0.8	841 (10)
C4—H4B		0.9700	0111			(10)
01—C1—C2		110.75 (16)	С3—	C4—H4B	11	0.1
O1-C1-H1	D	109.5	H4A-		10	8.4
С2—С1—Н1	D	109.5	03—	-C5O2	12	5.95 (17)
O1-C1-H1	E	109.5	03—	-C5—C6	11	7.66 (14)
С2—С1—Н1	E	109.5	02—	-C5—C6	11	6.37 (15)
H1D—C1—H	I1E	108.1	05—	-C6—O4	12	6.77 (19)
N2—C2—C1		112.53 (17)	05—	-C6—C5	11	7.06 (15)
N2—C2—H2	В	109.1	04—	-C6—C5	11	6.18 (14)
С1—С2—Н2	В	109.1	C4—	N1—H1A	10	9.5
N2—C2—H2	С	109.1	C4—	N1—H1B	10	9.5
С1—С2—Н2	С	109.1	H1A-	—N1—H1B	10	9.5
Н2В—С2—Н	I2C	107.8	C4—	N1—H1F	10	9.5

supplementary materials

N2—C3—C4	110.98 (15)	H1A—	-N1—H1F		109.5	
N2—C3—H3A	109.4	H1B—	-N1—H1F		109.5	
С4—С3—НЗА	109.4	C3—N	V2—C2		111.45	(14)
N2—C3—H3B	109.4	C3—N	J2—H2A		109.3	
C4—C3—H3B	109.4	C2—N	J2—H2A		109.3	
НЗА—СЗ—НЗВ	108.0	C3—N	V2—H2D		109.3	
N1—C4—C3	107.88 (16)	C2—N	V2—H2D		109.3	
N1—C4—H4A	110.1	H2A—	-N2—H2D		108.0	
C3—C4—H4A	110.1	C1—C	D1—H1C		109.5	
N1—C4—H4B	110.1	H1W-	–O1W—H2W		106 (3))
Hydrogen-bond geometry (Å, °)						
D—H···A	<i>D</i> —	H	H···A	$D \cdots A$		D—H…A
N1—H1A···O1W ⁱ	0.89	9	1.96	2.823 (2)		164
N1—H1B···O3 ⁱⁱ	0.89	9	2.12	2.8769 (19)		143
N1—H1B···O4 ⁱⁱ	0.89	9	2.11	2.818 (2)		136
N1—H1F…O2	0.89	9	1.82	2.707 (2)		172
N2—H2A···O4 ⁱⁱⁱ	0.90	0	1.80	2.688 (2)		170
N2—H2D···O5 ^{iv}	0.90	0	2.16	2.862 (2)		134
N2—H2D···O2 ^{iv}	0.90	0	2.00	2.773 (2)		143
O1—H1C···O3 ^v	0.82	2	1.94	2.736 (2)		163
O1W—H2W···O5 ^{iv}	0.84	4 (1)	1.91 (1)	2.753 (2)		178 (2)
O1W—H1W···O1 ^{vi}	0.84	4 (1)	2.27 (3)	2.968 (2)		141 (4)

Symmetry codes: (i) -*x*+1, *y*-1/2, -*z*+1; (ii) *x*, *y*, *z*-1; (iii) *x*+1, *y*, *z*-1; (iv) *x*+1, *y*, *z*; (v) -*x*+2, *y*+1/2, -*z*+1; (vi) *x*-1, *y*, *z*.

Fig. 1

